EPFL, Physique Générale II 24/06/2016

Les seuls objets autorisés sont:

- une feuille A4 manuscrite recto-verso

- stylos, etc.

Les réponses finales a chaque question doivent étre reportées sur [’énoncé dans
les cases prévues a cet effet. La justification détaillée et propre est a rendre sur
le papier quadrillé fourni.

Un feuillet quadrillé par exercice

Inscrivez votre nom sur chacun des feuillets! Et numérotez-les i/n

L’examen comporte 4 exercices, numérotés de 1 a 4

Le nombre de points maximum pour cet ezamen est de 40 points + 8 "points
bonus”, ce qui signifie que la note sera calculée comme si l'ezamen était de 40
points bien qu’il y en aie 43.

Ne pas ouvrir avant le début de
I’épreuve






Nom: ... Prénom : ...................... Section : ....... No: ...

Exercice 1. Régle de Maxwell pour un gaz de Van der Waals (VdW)
(8 points + 1 pt bonus)

Le but du probléme est de démontrer la régle de Maxwell pour un gaz de VAW
qui énonce que le palier de liquéfaction est tel que les aires des deux surfaces
comprises entre le palier de liquéfaction et l'isotherme de 1’équation d’état de
VAW sont égales (aires bleue et orange sur le schéma).

A

@ 1. Sur le diagramme (p — V') ci dessus indiquez clairement et sans am-
biguité:

O/?_S (a) Le palier de liquéfaction - - - - -

Une isotherme de I’'équation d’état de VAW M \/\

La pression de vapeur saturante pg, a la température de l'isotherme

)
)
d) La courbe de saturation
) La région ou on observe un mélange des formes liquides et gazeuses
)

(
\/\ L\ C? 2 (f) Le point L et le volume V;, au dela duquel il n’existe plus que la phase
h liquide lorsque ’on suit I’isotherme dessinée sur le schéma

\L 4,25 65 (g) Idem pour le point G et le volume Vi au dela duquel il n’existe plus
/ que la phase gazeuse

@ 2. Soit dU la forme différentielle de I’énergie interne du gaz. dU = TdS —pdV
ou T est la température, S 'entropie, p la pression et V' le volume. Cette
relation est elle toujours graie ou seulement restreinte a des transformations

réversibles 7 Justifiez votfe réponse sur les feuilles libres.

)<Oui, toujours vraie —
O Non, seulement réversibles

9
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3. Soit H l'enthalpie H = U + pV. Expliquer les motivations et l'intérét
d’introduire cette nouvelle fonction d’état pour certaines transformations

que l'on précisera. Ecrire la différentielle dH de I'enthalpie en fonction de
T,S,pet V.

O dH = ...Td&..+..&ld.f ................................................

4. Nous allons utiliser une approche semblable pour étudier des transforma-
tions a température constante (isotherme). On définit la fonction F*:

F=U-TS

0/ S (a) F est elle une fonction d’état, Justifiez

&(Oui O Non

03 (b) Ecrire la différentielle dF' de F' en fonction de S,T,p et V
/

AF = oo f AN SAT

O/S (c) Expliquer pourquoi on peut en déduire que pour une transformation A CN

1,5

9

isotherme la quantité pdV est une différentielle totale exacte. [’bh@g {,K@\ﬁ %
- : . . . = {d(f (60 Po~dbo
5. On considére maintenant la suite de transformations suivantes pour un gaz
de VAW. Etape 1 : de G vers L en suivant le palier de liquéfaction et étape
2 de L vers G en suivant 'isotherme donnée par I’équation d’état du gaz de
VdW.

s (a) Que vaut AF' le long de ce trajet, justifiez.

ﬂ/ S (b) Que représente graphiquement f‘ZZ pdV ?

»,$ (c) En déduire la régle de Maxwell.

)

6. Le but est maintenant de trouver une relation liant Vg, Vi, a et b. On
rappelle I’équation d’état d’'un gaz de VAW pour une mole de gaz:

(p+ ) (V= b) = RT

ol a et b sont des constantes dépendantes du gaz.

/ (a) Exprimer pdV pour un gaz de VAW, puis en déduire 1’équation im-
plicite (c’est & dire une équation du type f(z,y,...) = 0) liant T', Py,
Ve, Vi, a et b. Ne pas essayer de la résoudre.

- b A
f(T, Py, Vi, Vi, a,b) = Klﬂ/«/&i}fi T 4. \%—Ub)w W(\JOJ\[{’ 0

(b) Question Bonus : utiliser ce résultat pour proposer une autre démon-
stration de la régle de Maxwell

1. Voir feuille

!La fonction F porte le nom d’énergie libre.
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. Oui, car T, S, p, V fonctions d’état

. dH = dU +d(pV) = —pdV + TdS + pdV + Vdp = TdS + Vdp

Utile pour isobare / changement de phases.

a) Oui car U, T, S fonctions d’état
b) dF = dU — d(T'S) = TdS — pdV — TdS — SdT = —pdV — SdT

¢) Isotherme: dT=0 donc dF = —pdV; dF différentielle totale exacte, donc
pour une isotherme -pdV différentielle totale exacte

- (
(
(

. (a) 0 car chemin cyclique et F fonction d’état
(b) L’aire sous la courbe p(V) du diagramme (p, V') entre V; et V;

(¢) On prend un chemin cyclique de V;, a Vi a l'aller le long du pallier,
et au retour le long de la courbe de VAW, ce sont deux transformations
isothermes, 'intégrale doit étre nulle, une aire est comptée plus et 'autre
moins, elles doivent étre égales pour que la somme fasse 0.

. (a)

_ BT a
P=yv 0 ve
RT

En intégrant entre Vi et Vg, p = psay = cte, et T' =cte

Ve —b 1 1

AT

psat(VG - VL) RT'In

Ve —10 1 1

= RT1In sat (Ve — V) =0
(b) psat (Ve — V1) est Paire du rectangle limité par la courbe de saturation
et les volumes V7, et V. RT In VG b + a(vlT; — V—) est aire sous I'isotherme

de VAW, les 2 étant égales, la 101 de Maxwell doit étre vérifice.
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Nom: ... Prénom : ...................... Section : ....... No: ...

Exercice 2 Une Montgolfiére (10 points)

Dans tout l'exercice, I'air sera considéré comme un gaz parfait.

Pour les applications numériques, Mo = 16 g/mol; My = 14 g/mol et on
prendra R = 8 J.mol 'K™!

On étudie une montgolfiére & air chaud qui emporte 4 personnes. Sa masse
m (ballon + nacelle + passagers + brileur) est 700 kg et le volume du ballon
V = 2800 m®. Le ballon est ouvert a sa base afin de laisser entrer I’air chaud.

- V = 2800m?
" T, =100°C

a m = 700kg

/] /S 1. En supposant que lair est composé de 20% de molécules d’oxygéne Oy et
de 80% de molécules d’azote Ny, calculer la masse volumique de Dair, en
fonction de M,;;, (masse molaire de lair), p, R et T.

A Pair = ”K/\vf .................

==

N

A.N. Calculer la masse volumique de I’air au niveau du sol ou

p=po=10° Paet T =Ty = 27°C.
3
0,5 AN po= .. zﬂ@%?/m, ........

2. Exprimer la loi des gaz parfaits en fonction de p, la densité du gaz p, T et
une constante R* qui dépend de M,;,.

< O OWC-
O)S - pT q); %« e

K "L (PR A

- — (L/L



3. En utilisant le principe d’Archimeéde, calculer la force ascensionnelle s’exergant

sur le ballon au niveau du sol, sachant que 'air dans le ballon est chauffé a
Ty, en fonction de pg, V, g, Rx, m, g et des températures Tg et Tj. gl /?%)/ ol

Yo < My dy

sz(% .......... ) Ll

4. On cherche & déterminer h,,,, l'altitude maxnnale que peut atteindre le

ballon. On suppose que la pression et la température décroissent linéaire-
ment avec laltitude: p(h) = py — ah et T'(h) = Ty — bh.

Trouver I'équation du 2nd degré permettant de déterminer h,... Ne pas
la résoudre!

_abh” fMb.(@..m.&AT..+.6%L.)..;.M(, o KT ouec e LTS

v
5. Dans la réalité, comme le ballon n’est pas fermé, il ne constitue pas en toute [),;/ ")

rigueur un volume fini et on ne peut pas appliquer le principe d’Archiméde.

(a) Quelle est la relation liant la variation de pression dp avec la masse
\ volumique p, g, et la variation de hauteur dh 7

‘ (b) Expliquer qualitativement pourquoi le ballon reste gonflé

6. Retrouver le méme résultat qu’au point 3, en faisant le bilan des forces

s’appliquant sur I’enveloppe du ballon. Pour simplifier les calculs, on sup-
posera que le ballon est un cylindre vertical de section S, et de hauteur H
et qu’il est ouvert & sa base par un trou de taille négligeable devant S.

7. Discuter la limite de validité de ce modéle.

:M-p

1. pV — TLRT p - % - Mair air pT

AN 600 g/m?

<z

2. p = M,p/RT devient p = (R/M,,)pT

p=RpT
R
R =
Mair

3. Forces sur le ballon = poussée d’archiméde Fy et poids du ballon et de I'air

dedans (m + myu)g

-ﬁasc = (pOgv)gz - (m + pintgv)gz

Vagpo (1 1
Fase =V gpest — (Vgpint +mg) = R \T. 1) "™
ext
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4. hpax est atteint quand Foe. =0

Vgp(h) 1 1
Fasc h) = - = | — =0
W="% \tw 1) "™
Vg(po — ah) 1 1
Fasc h) = — 7 | — =
(h) R* o 1) ™Y
(po — ah)(Ty — Ty +bh) _ mR'T, _
T, — bh v

(po — ah)(AT + bh) = A(Ty — bh)
—abh? + h(bpy — aAT + Ab) = ATy — poAT

5. (a) Equilibre d'une couche d’atmosphére de masse volumique p

> F =0=—mgé. — p(h+ dh)Ae. + p(h) Aé.
—pAdhg = Ap(h + dh) — Ap(h)

dp = —pgdh

(b) L’air est plus chaud dans le ballon donc en tout point d’altitude h
Pint < Pext donc dpiy < dpexy mais comme dp < 0 on a 0 > dpyy > dpext La
pression diminue moins vite dans le ballon, elle est identique en bas, donc
en tout point au dessus de la premiére couche, elle est supérieure dans le
ballon par rapport & la pression atmosphérique, le ballon reste gonflé.

—

Fu= [ oi-p)ids,~ [ iop)Sae [ (n-p)se-mee.
% coté face inf ~—~— face sup

s’annule par symmeétrie

Avec la relation de la question (5) dp = —pgdh et en considérant p constant
sur la hauteur du ballon et p = R*pT

Fose = ((po — pigH) — (po — pegH))S —mg =0

Po Do
RT.. R*Ty

MW%—po—Ww=9V< )—mgzo

On retrouve bien la méme chose.

7. Ballon pas trop grand. Sinon on ne peut pas considérer p constant sur la
hauteur du ballon pour le calcul.
Limite de la troposphére (aprés T=cte)
T ballon = cst, indépendante T ext
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Nom: ... Prénom : ...................... Section : ....... No: ...

Exercice 3 Un peu de thermo dans la cuisine (12 points)

Un considére une masse m = 1 kg d’eau a I’équilibre thermique dans une
cuisine & 77 = 20°C. Pour évaluer les ordres de grandeur, on prendra: Chaleur
latente de fusion de la glace Ly = 300 kJ.K™!; capacité calorifique massique de la
glace ¢, = 2 kJK 'kg™!; Capacité calorifique massique de I'eau ¢, = 4 kJK~'kg™!
Donner les formules littérales et ne faire les A.IN. que si elles sont
explicitement demandées.

@ 1. On place 'eau dans un récipient de capacité calorifique négligeable, et on
la met dans le compartiment congélation du frigo, a Ty = —5°C. Le frigo
fonctionne grace & un compresseur de puissance P = 800 W.

7 (a) Quel est le temps minimal nécessaire pour avoir de la glace a -5°C
f 5 dans le compartiment congélation, en fonction des températures, des
capacités calorifiques, de Ly , de P et de m ?

- i = (MQ(A,1> *WMLMMC }/?

A.N., donner l'ordre de grandeur de t

@fS tin = «-e- A VA (/"’ng ..............................

(b) La transformation est-elle réversible ou irréversible? Justifier.

@ O Réversible

& Irréversible

5 (c) Calculer en fonction des données de 'énoncé la variation d’entropie de
[ ? / leau AS, ainsi que Sege €t Ssen

| AS= Ly b Lo ....g.m.%..&.m Cg...ﬁn..

1 o il
[ Seh M 12 e . 2o a /vv\cﬁ...’.{—. -
* Ty T

0/5 Scree AS.—_S;/‘@ ...........................................

(d) En fait, il a fallu cinq fois plus de temps que le temps évalué plus tot.
Quelle(s) sont la(les) raison(s) possibles? Que peut-on en conclure sur
Pefficacité du frigo n.e

05

2. Une fois la glace & —5°C, on la sort du compartiment congélation et on la
place dans la cuisine, qui est toujours supposée a Tj.

(a) Tracer I’évolution de la température en fonction du temps.

B Q (hepe ) = L/e
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0 /S(c) que peut-on dire qualitativement de S €t Seen
5(d) en toute rigueur, et sur 'ensemble des deux étapes (eau mise a con-
D/ geler, puis a dégeler) la température de la cuisine a-t-elle

0O Augmenté O Diminué O Pas changé

3. On place maintenant ’eau & 717 dans une casserole posée sur une plaque
@ électrique qui porte la face inférieure de la casserole a T, = 150°C. On
appelle A la conductivité thermique du matériau du fond de la casserole, d

son épaisseur et A son aire. ’

(a) Décrire qualitativement, et tracer sur un schéma 1’évolution au cours
/ du temps de la température du fond de la casserole en contact avec
I'eau.

AT

LSp°C +~  — ———7://

/{DO’C T = P

Y

(b) au bout de combien de temps l’eau commence-t-elle a bouillir 7 (On
S néglige I'évaporation). S pao/ < dT os/1,5 +
3 tormmantone. V) exo S o 9&«”

(c) Combien de temps s’écoule entre le moment ou I'eau commence a
\ bouillir et celui ou elle est complétement évaporée 7

1. (a) Efficacité max du frigo

ML T T -1 T W Pl

b

& of 14



|Qs| = me.(T1 — To) +mLy 4 mcy(Ty — Ty)

tmin -

P
AN environ 500s{t0mimutes) <os -

(b) Pas succession d’états d’équilibres -> irréversible

[mce(Tl —To) + mLy + mey(To — Tf)](\«’kfl

/

(c) On calcule AS sur une transformation réversible entre le mémes états
initial et final.

.
lov. O oC @ oz (¢ -5+
B — - &
e < “’O" g

AS:/mcedT+/_Lfdm+ megdT’
1 T 2

~

TO 3 T
T() mLf Tf
AS:mcelni— T —|—mcgln?0

(températures en Kelvin)

Pur le calcul de Sge, la température est 7'

mceedT —Lydm mcydT’
Séch - + +
1 Tf 2 Tf 3 Tf
Sy — mee(To — Tl) _ mLy N meg(Ty — Top)

Ty Ty Ty

Scrée =AS— Séch

(d) Pefficacité du frigo réel est inférieure a l'efficacité Carnot théorique; le 5 23 L
frigo est mal isolé; le compresseur ne marche pas tout le temps... ou tout Q.o

autre(s) explications correcte. 1 raison = OK pour les points. Sl
2. (a) Mud'\\/\ R

7) o) ; »T /
"5‘ { \ “be“"{y

J?i 0“‘/* /}w& ~ Mc%ﬂ/‘ud& .
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(b) Le systéme revient a I’état initial. S fonction d’état ASy = —AS,
trouvé a la question lc.

(c) Transfo irréversible. Seee > 0. Sgen = AS — Sees , On récupére moins
d’entropie de la cuisine que pour 1 transfo réversible. De plus les chaleurs
sont les mémes, mais la température de ’environnement supérieur dans
partie (2), donc en norme Seq, plus petit dans partie (2)

(d) Transfos irréversibles. Frigo et glace revenus a I'état d’avant -> aug-

menté.

3. (a) Au début, 'eau va chauffer de 77 a T, = 100°C, le fond de la casserole
aussi. Mais comme AT diminue, P transmise diminue, et donc ca chauffe
de - en - vite.

eau a 100°C, elle s’evapore, température constante.

Ensuite, le fond va progressivement chauffer -> 150°C, avec un comporte-
ment asymptotique.

- NS«

A . N1 . %LV}

(b) On cherche au bout de combien de temps T, = 100°C id. lac de Joux
T temps a l'interface

M(T; =T)  dQ — mcdT
d Codt dt
ar B AA

T—T,  dme,
T, —T; AA

P:

dt

1 =My
t T1 — T3 dmce !
o= dmce n T1 — T3
M T

(c) C’est encore plus facile,

)\A eva;
.P:de:(iGE—B)Zth
Qevap = va

mL,d
ty =
NA(T; — Ty)
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Nom: ... Prénom : ...................... Section : ....... No: ...

Exercice 4 Moteur d’avion (10 points + 2 points bonus)

Le but du probléme est d’étudier un modéle simplifié de réacteur d’avion. La
plupart des questions nécessitent trés peu de calculs et beaucoup sont indépen-
dantes si I'on admet le résultat de la question 1.3. Toutes les évolutions sont
considérées quasi-statiques et les gaz se comportent comme des gaz parfaits de
coeflicient adiabatique 7y, de capacité calorifique massique & volume constant ¢y
et & pression constante c,.

I- Premiére partie
On s’intéresse a des systémes qui laissent entrer ou sortir de la matiére. On
se limitera a des régimes stationnaires.

On s’intéresse tout d’abord & un
compresseur dont la fonction est de
prélever en amont un volume V; d’'un
gaz & la pression constante P; et
de le transférer en aval a la pres-
sion constante P,. Pour ce faire le
compresseur est constitué d’une série Bt
d’hélices en rotation. Ces hélices T1 &V i
sont actionnées en leur fournissant m Y

un travail mécanique Weype. j
On suppose qu’il n’y a pas d’échanges de chaleur avec I'extérieur. On considére
une masse, m, de gaz qui traverse le compresseur. Quand le compresseur recoit
le travail Wiy, un volume V; & Py, 17 de gaz est prélevé et injecté en sortie pour
former un volume V5 & Py, T5.

puis en fonction de m T3, Ty, ¢y et/ou c,.

G. Ecrire le travail W recu par la masse m de gaz en fonction de U ou H,
/

. Exprimer le travail W recu par le gaz en fonction de Wi, travail nécessaire
/\ pour faire fonctionner le compresseur, P;, Vi, P, et V5;

En déduire Wi, en fonction de U ou H, puis en fonction de m 17, 1s, ¢y
et/ou c,.

- S o e T
0,25 02
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On considére maintenant le cas
général d’un systéme qui préléve une
masse m de gaz d’un réservoir a pres-
sion constante P, et le réinjecte dans
un réservoir & la pression constante
Ps. Pour ce faire on fournit a ce sys-
téme un travail mécanique Wi, et
une quantité de chaleur Q).

Po, To

> ),

De plus le gaz dans le compartiment 1 arrive avec une vitesse w;, une énergie
cinétique F.; et en sort dans 2 avec une vitesse ws et une énergie cinétique E.o.
On considére qu’il n’y a pas de variation d’énergie potentielle.

3. Montrer que
AH + AEC = Q + Wfonc

On pourra admettre ce résultat par la suite.

II- Deuxiéme partie

Un réacteur d’avion est constitué de deux blocs, le premier appelé chambre de
combustion, dont nous venons d’étudier une partie, dont la fonction est de délivrer
un gaz & une température 7T,, une pression P, et s’écoulant & une vitesse w, dans
un second élément appelée tuyere. La tuyere est un élément rigide divergent
qui ne recoit aucun travail et dans lequel les transformations sont également
adiabatiques. Sa fonction est d’éjecter les gaz avec une grande énergie cinétique
ce qui par réaction engendrera la poussée du réacteur. Nous allons tout d’abord
étudier cette tuyére. On notera Ty, P et w, les températures pressions et vitesses
en sortie. On considére une masse m de gaz qui traverse la tuyére.

— PR,
Chambrede | — T,
combustion

Tuyere Ts

—ba) e

le |\ 22X
Ts = ....L P P

<

P.. Ves

O& Exprimer la vitesse de sortie des gaz, ws, en fonction de we, m, ¢, T. Ps et

(1)

am fuls 26T L% )]

6. Question bonus : On trouve typiquement des valeurs de w, entre quelques
100 et quelques 1000 m/s. Au dela de quelles vitesses d’éjection notre
modeéle n’est trés probablement plus valide ?

. (W (r
\ikesse o m@u.@wmﬂiﬁwﬁ
/ Lo oS
7. Question bonus : Quelle est la force de poussée, F', du réacteur si celui ci
est traversé par un débit massique d’air D
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On s’intéresse maintenant a la chambre de combustion en amont de la tuyere. Elle
est constituée (1) du compresseur vu en (I) dans lequel les transformations sont
adiabatiques, le compresseur regoit une énergie mécanique Wiy, pour fonctionner;
(2) une chambre ou est injecté le kéroséne et a lieu la combustion, dans cette partie
on suppose les transformations isobares et le gaz recoit une quantité de chaleur
()2, et ou il n’y a pas de piéces mécaniques qui fournissent un travail mécanique;
(3) une turbine dans laquelle se produit une détente adiabatique et qui fonctionne
selon le principe inverse du compresseur dont la fonction est i) de délivrer les gaz
a 'entrée de la tuyére et ii) de générer un travail moteur qui est intégralement
utilisé pour faire fonctionner le compresseur.

(1) P>

2 Ps )
Compresseur | T2

Combustion | Tz Turbine

aa?

Dans la suite du probléme on néglige 1’énergie cinétique des gaz a ’entrée et dans
la chambre et en entrée de tuyére devant leur énergie cinétique a I’éjection (w; et
We K Ws).

8. Remplir le tableau ci-dessous donnant les températures et pressions a chaque
étape. On exprimera les résultats en fonction de 77, du taux de compres-
sion &« = P,/P;, Q2 et 7. Indication pour exprimer T, en fonction des
autres températures : écrire que toute I’énergie mécanique utile fournie par
la turbine est utilisée pour actionner le compresseur.

| 1 | 2 | 3 e | s
P P
T T
9. Remplir le tableau ci-dessous donnant Wi, le travail recu des piéces mé- ' ZS/ o

)

3

caniques et @) la chaleur regus a chaque transformations. On exprimera les
résultats en fonction de m, c,, T, Ts et Q.

| \ 1->2 \ 2->3 \ 3->e \ e->s

Wfonc

Q

10. Comment est définie l'efficacité du réacteur? L’exprimer en fonction de
données du probléme.
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. AU = Q + W Adiabatique Q@ =0 AU =W
GP AU = mCU(TQ — Tl)

. Le gaz recoit-p; AV; du coté avant-ps AV, et Wi, entre.

W =pAV; 4 poAVa + Wione = +91Vi # p2Va + Wione
AH = AU + p2Va *+piVi=W + paVo % p1Vi = Wione
G.P. AH = mc,(T, — T1)
. Avec E, et E),
AE = AE. + AE, + AU = W + Q U AE:
Cas général @ # 0.
AH = AUFpVi4paVa = Q+W—ABApsVokpiVi = Q—ABAW + oV ¥ piVs

Wfonc

AH + AEC = Q + Wfonc
. Adiabatique réversible p. V) = p,V ou plTY = pl=7T7

1—o

N
Ds

AE, +AH =Q + Wigne =040

1 1 - -
AFE, = §mw§ — §mw3 =AH = mcp(Ts - Te)

Wy = w§+ 2¢,Te [(&)T — 1}
p
. vitesse du son

. F = Duw,

y—1

. 1 ->2 adiabatique 75 = T1(p2/p1) 7 = Tloz%l

2 ->3 isobare AH = Qo = mc,(T5 — To) Ts = Ts + Q2 / (mcy)

3-> e adiabatique p. = pg(Te/Tg)%

AHsze = Wi . =mey(T. — T3) = —Wigne = —AH1p = —me, (T — 1)

_ 1=t
T.=Ty— Ty~ Ty =Tia' +Qo/me,— T, +T

Ti + Q2/mcy
1=
TlaTl+Q2/mcp
e->stuyere @Q=0; W =0; AE.+AH =0

sortie & p; donc p, = py

Pe = ap

adiabatique
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